European XFEL entlockt einem wichtigen Nanogel Geheimnisse

Medikamente gezielt und kontrolliert an einer gewünschten Stelle im Körper eines Patienten freisetzen

Ein internationales Team unter Leitung von DESY-Wissenschaftler Felix Lehmkühler hat am weltgrößten Röntgenlaser European XFEL die Eigenschaften eines wichtigen Nanogels untersucht, das in der Medizin eingesetzt wird, um Medikamente gezielt und kontrolliert an der gewünschten Stelle im Körper eines Patienten freizusetzen. Die Ergebnisse veröffentlichte das Team jetzt in der Zeitschrift Science Advances.

Felix Lehmkühler am Instrument MID (Materials Imaging & Dynamics) des European XFEL, an dem die Experimente durchgeführt wurden. (Foto: European XFEL)
Felix Lehmkühler am Instrument MID (Materials Imaging & Dynamics) des European XFEL, an dem die Experimente durchgeführt wurden. (Foto: European XFEL)

Das Forschungsteam hat am European XFEL in Schenefeld bei Hamburg das temperaturbedingte Quellen und Kollabieren des Polymers Poly-N-isopropylacrylamid (PNIPAm) untersucht. PNIPAm wird aufgrund seiner dynamischen Veränderungen in der Medizin eingesetzt, z. B. für die Verabreichung von Medikamenten, aber auch für die Züchtung von Geweben, das Tissue Engineering, oder der Sensorik.

PNIPAm ist in der Regel in Wasser gelöst. Oberhalb einer bestimmten Temperatur, der sogenannten unteren kritischen Lösungstemperatur (LCST), die bei etwa 32 Grad Celsius liegt, geht es von einem hydrophilen, wasserliebenden Zustand in einen hydrophoben, wasserabweisenden Zustand über. Infolgedessen ändern die Nanogel-Partikel oberhalb dieser Temperatur schnell ihre Größe, indem sie Wasser abstoßen.

Diese Eigenschaft ist für eine Vielzahl von Anwendungen nützlich, darunter für die kontrollierte Freisetzung von Medikamenten im Körper eines Patienten, als Modellsystem für Proteine, im Tissue Engineering, der Kultivierung von organischem Gewebe für medizinische Anwendungen, oder als biokompatible Temperatursensoren. Bislang war es jedoch sehr schwierig, diese schnellen Phasenübergänge experimentell zu beobachten und somit für verschiedene Anwendungen zu optimieren. Deswegen ist die genaue Charakterisierung der Kinetik der Veränderungen des PNIPAm-Polymers mit der Temperatur noch immer ein lebhaftes Forschungsthema.

Die schnelle Folge von Röntgenpulsen des European XFEL ermöglicht es den Forschenden nun, die raschen, temperaturabhängigen Veränderungen im PNIPAm-Nanogel mit einer Technik namens Röntgen-Photonen-Korrelationsspektroskopie (XPCS) zu untersuchen. „Dank der hohen Wiederholrate des European XFEL können wir diese Messungen mit ausreichend hoher Zeitauflösung durchführen, um die Struktur und Bewegung der Nanogels zu verfolgen“, sagt Johannes Möller, Wissenschaftler am Instrument Materials Imaging and Dynamics (MID) des European XFEL. Die Forschenden untersuchten Partikel mit einer Größe von etwa 100 Nanometern, das ist ein Zehntausendstel eines Millimeters. Die Röntgenpulse wurden sowohl zur Erwärmung der Nanopartikel als auch zur Messung ihrer strukturellen Veränderungen genutzt.

„Mit Hilfe der am European XFEL gewonnenen Daten konnten wir nun das Quellen und Kollabieren des Polymers besser verstehen“, sagt Felix Lehmkühler, einer der Leiter des Teams. „Im Gegensatz zu früheren Studien, die sich auf indirekte Messungen der Kinetik des Quellens oder Kollabierens beschränkten, haben wir herausgefunden, dass das Nanogel mit rund 100 Nanosekunden deutlich schneller schrumpft, aber zwei bis drei Größenordnungen länger zum Quellen braucht“, erklärt Lehmkühler. Die Ergebnisse könnten dabei helfen, die Eigenschaften des Polymers besser zu verstehen und für verschiedene Anwendungen zu optimieren, z. B. für die Entwicklung effizienterer Arzneimittelabgabesysteme.

Das Forschungsteam bestand aus Wissenschaftlerinnen und Wissenschaftlern von DESY, der Universität Padua (Italien), des Hamburger Zentrums für ultraschnelle Bildgebung CUI sowie des European XFEL.

Weitere News

In den Jahren 2024 und 2025 sollen die Vorarbeiten stattfinden, damit ab 2026 die zentralen Bauprojekte beginnen können. Bei diesem Zeitplan ist eine Inbetriebnahme von PETRA IV ab 2030 avisiert. (Visualisierung: DESY, Diana von Ilsemann)
In den Jahren 2024 und 2025 sollen die Vorarbeiten stattfinden, damit ab 2026 die zentralen Bauprojekte beginnen können. Bei diesem Zeitplan ist eine Inbetriebnahme von PETRA IV ab 2030 avisiert. (Visualisierung: DESY, Diana von Ilsemann)

Hamburg sagt Ja zu PETRA IV

Mit PETRA IV plant das Forschungszentrum DESY die leistungsstärkste Röntgenlichtquelle der Welt. Sie wird den Blick in den Nanokosmos und die Röntgenanalytik revolutionieren. Ziel von ...

Weiterlesen …

Innovationsplattform Hi-Acts: Jetzt mitmachen!

Hi-Acts – die Helmholtz Innovation Platform for Accelerator-based Technologies & Solutions – ist Anfang des Jahres gestartet. Das

Weiterlesen …
Das DESY-Direktorium bei der Presiverleihung des HH 2040-Awards. (Bild: © DESY, Maike Bierbaum)

DESY gewinnt “Hamburg 2040”-Award

DESY hat bei der Premiere des Sommerfestes der Hamburger Wirtschaft im Millerntor-Stadion den erstmals vergebenen „Hamburg 2040“-Award erhalten. Mit dem Preis würdigt die ...

Weiterlesen …